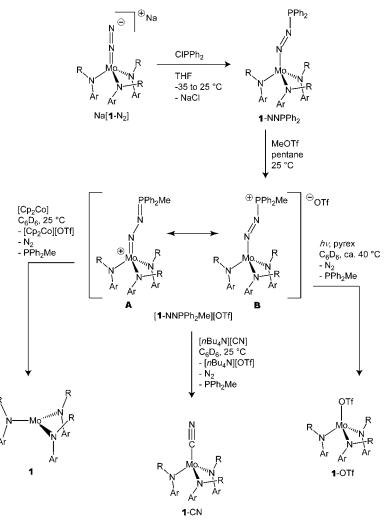
N,P Ligands


A Ligand Composed of Dinitrogen and Methyldiphenylphosphane in a Cationic Molybdenum Complex**

Tetsuro Murahashi, Christopher R. Clough, Joshua S. Figueroa, and Christopher C. Cummins*

It is well recognized that a reactive chemical fragment, which in its free state may be fleeting, not isolable, and difficult to observe, may sometimes be stabilized or trapped in an isolable form by coordination to a transition-metal center. Herein we report a unique ligand made of N₂ and PPh₂Me, which is stabilized in a cationic molybdenum complex. It does not seem likely that such a "diazophosphorane" NNPR₃ ligand^[1] would be obtained simply by addition of PR₃ to a terminal metal-N₂ complex, because the β-N (terminal) atom of coordinated N2 typically is at least moderately nucleophilic. Furthermore, the NNPR₃ moiety is expected to be thermodynamically unstable in view of the great stability of N₂ and PR₃. To the best of our knowledge, the diazophosphorane NNPR3 unit has not been identified previously as a ligand in spite of the prevalent use of tertiary phosphines as ligands in N₂ coordination chemistry. However, the NNPR₃ moiety is found as a chemical fragment in some known phosphorus-nitrogen compounds such as $R_2C=N-N=PR_3$, $[R-N=N-PR_3]^+$, $CN-N=PR_3$, and [NNNPR₃]+.[1,2]

As hinted at by the structures of these known compounds, we suggest that the NNPR₃ moiety has the potential for stabilization by binding with a metal center at its N-terminus. This study presents a rational construction of the surprising NNPR₃ ligand by stepwise functionalization of dinitrogen coordinated to a formally d² molyb-

denum center.^[3] The X-ray structural analysis, as well as topological charge density analysis based on density functional calculations, indicate that the diazophosphorane ligand is stabilized effectively by equal contributions from the two following limiting resonance structures: (triorgano-

Scheme 1. Synthesis of [1-NNPPh₂Me][OTf], resonance structures, and reactivity. R = tBu, Ar = 3,5-dimethylphenyl.

[*] Dr. T. Murahashi,^[+] C. R. Clough, J. S. Figueroa, Prof. Dr. C. C. Cummins Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 2-227 Cambridge, MA 02139-4307 (USA) Fax: (+1) 617-258-5700 E-mail: ccummins@mit.edu

- [*] Permanent address:
 Department of Applied Chemistry
 Graduate School of Engineering
 Osaka University
 Suita, Osaka, 565-0871 (Japan)
- [**] This work was supported by the United States National Science Foundation (CHE-0316823). Funding from the Japan Society for the Promotion of Science (JSPS) for Research Abroad (to T.M.) is also acknowledged.

phosphoranylidene)hydrazido(2-) [Mo]⁺(= $N-N=PR_3$) and (triorganophosphonio)diazenido [Mo]($N=N-+PR_3$); these are shown as **A** and **B**, respectively, in Scheme 1.

The anionic end-on dinitrogen complex $[(N_2)Mo\{N-(tBu)Ar\}_3]^{1-}$ $[1-N_2]^ (Ar=3,5-Me_2C_6H_3)$, which is conveniently obtained as its sodium salt by the reaction of $[Mo\{N(tBu)Ar\}_3]$ (1) with excess Na/Hg under 1 atm N_2 , [4] was derivatized smoothly by reaction with Ph₂PCl in THF to afford the diphenylphosphinodiazenido complex 1-NNPPh₂. [5] The ³¹P{¹H} NMR signal of 1-NNPPh₂ appears at $\delta=67.3$ ppm as a singlet in C_6D_6 . Monitoring of the reaction in C_6D_6 or $[D_8]$ THF showed two major by-products: $[Mo\{N-(tBu)Ar\}_3]$ (1) and Ph₂PPPh₂, with additional formation of $[ClMo\{N(tBu)Ar\}_3]^{[5]}$ in small quantities. The molar ratio of 1-NNPPh₂/Ph₂PPPh₂ in C_6D_6 after 1 h at 23 °C was 78/22. The

orange complex **1**-NNPPh₂ was isolated in 10% yield after repeated recrystallization from pentane at -35 °C. The low yield of isolated **1**-NNPPh₂ was due in part to the spontaneous decomposition of **1**-NNPPh₂ to [Mo{N(tBu)Ar}₃], ^[6] Ph₂PPPh₂, and N₂ during the recrystallization. The structure of **1**-NNPPh₂ was determined by X-ray structure analysis (Figure 1). The N4–N5 (1.261(4) Å) and N5–P1 (1.736(4) Å)

P1 N5

N5

N1 N2 N3

Figure 1. Molecular structure of $1-NNPPh_2$ with thermal ellipsoids drawn at the 50% probability level.

lengths are consistent with a N=N double bond and N-P single bond, respectively. Complex 1-NNPPh2 can thus be formulated as the phosphinodiazenido derivative [(Ph₂P-N= N)Mo $\{N(tBu)Ar\}_3$. The Mo1-N4-N5-P1 skeleton is bent at the N5 atom (N4-N5-P1 122.6(3)°). The Mo1-N4 length (1.753(3) Å) and Mo1-N4-N5 angle (171.1(3)°) are similar to those found for the related trimethylsilyldiazenido complex $[(Me_3Si-N=N)Mo\{N(tBu)Ar\}_3]$. [4] Strong multiple bonding between the α-N atom and Mo in these systems is indicated by the short bond length, the linear bond angle, and the isolobal relationship with nitrosyl complexes such as [(ON)Mo{N(tBu)Ar}₃].^[8] Because of the isolobal relationship between the quartet ground state $Mo\{N(tBu)Ar\}_3$ fragment^[6] and a ground state N atom, we recognize that nitrosyl $[(ON)Mo\{N(tBu)Ar\}_3]$ is isolobal with the triatomic N_2O molecule: both systems share a stable $(\pi_0)^4(\pi_1)^4$ configuration across linear MoNO and NNO moieties, respectively.

Treatment of **1**-NNPPh₂ with MeOTf (1 equiv) in C₆D₆ rapidly provided the triflate salt [(Ph₂MePNN)Mo{N-(tBu)Ar}₃][OTf] [**1**-NNPPh₂Me][OTf] of the desired cation, in essentially quantitative fashion at ambient temperature. No N-methylated product was observed, even when excess MeOTf was employed. In contrast, it has been reported that the reaction of Na[**1**-N₂] with MeOTf (2 equiv) afforded the doubly N-methylated product [(Me₂NN)Mo{N(tBu)Ar}₃]-[OTf].^[4] The yellow-orange complex [**1**-NNPPh₂Me][OTf] was isolated in 41 % yield from Na[**1**-N₂] without purification of the intermediate **1**-NNPPh₃. The ¹H NMR resonance for

the PPh₂(CH₃) moiety in [1-NNPPh₂Me][OTf] appears at δ = 3.03 ppm as a doublet (${}^2J_{\rm PH}$ = 13 Hz). The 31 P{ 1 H} NMR spectrum of [1-NNPPh₂Me][OTf] shows a singlet at δ = 20.0 ppm. The structure of [1-NNPPh₂Me][OTf] was determined in a single-crystal X-ray diffraction study (Figure 2).

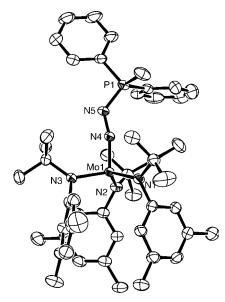


Figure 2. Molecular structure of cation $[1-NNPPh_2Me]^+$ with thermal ellipsoids drawn at the 50% probability level. The triflate counteranion is not shown.

The Mo1-N4-N5 angle (166.7(2)°) and N4-N5-P1 angle (129.2(2)°) in [1-NNPPh₂Me][OTf] differ only slightly from corresponding angles in 1-NNPPh2 (Figure 1). The system is thus still close to linear at the α -N atom and rather bent at the β-N atom. However, the N5-P1 interatomic distance (1.626(3) Å) is 0.11 Å shorter than the corresponding distance in 1-NNPPh₂ (1.736(4) Å), and is similar to that found in a typical iminophosphorane (e.g. 1.602 Å for Ph-N=PPh₃).^[9] Note also that the N4-N5 (1.299(3) Å) bond length is increased relative to 1-NNPPh2; in other words, greater activation of the N₂ unit has been triggered by the methylation reaction, although the N4-N5 distance in [1-NNPPh₂Me][OTf] is still considerably shorter than that observed for phosphoranylidene hydrazone systems such as $Ph_3P=N-N=CPh_2 (N-N=1.388 \text{ Å}).^{[10]} Of further interest:$ the Mo1-N4 (1.739(2) Å) bond length in [1-NNPPh₂Me]-[OTf] is slightly shorter than that found for precursor 1-NNPPh₂.

The isolated salt [1-NNPPh₂Me][OTf] is stable in C₆D₆ solution in the dark for several days at ambient temperature and even at 50 °C for one day. Interestingly, degradation of the NNPPh₂Me ligand was observed when [1-NNPPh₂Me][OTf] was photoirradiated (Rayonet RPR-2537 Å lamps, Pyrex tube) in C₆D₆. After irradiation for 1 h at ca. 40 °C, approximately 50 % of [1-NNPPh₂Me][OTf] was converted into the triflate complex [Mo{N(tBu)Ar}₃(OTf)] (1-OTf) and PPh₂Me (ca. 90 % based on the consumption of [1-NNPPh₂Me][OTf]) and presumably N₂. The purple triflate complex 1-OTf was identified by an independent synthesis,

Zuschriften

that is, oxidation of $[Mo\{N(tBu)Ar\}_3]$ with AgOTf or $[Cp_2Fe]$ -[OTf]. The reaction of $[\mathbf{1}\text{-}NNPPh_2Me]$ [OTf] with $[nBu_4N]$ [CN] in C_6D_6 upon mixing afforded $[(NC)Mo\{N(tBu)Ar\}_3]$ (**1**-CN)^[11] and $PPh_2Me + N_2$ almost quantitatively (Scheme 1). Treatment of $[\mathbf{1}\text{-}NNPPh_2Me]$ [OTf] with cobaltocene (1 equiv) in C_6D_6 gave $[Mo\{N(tBu)Ar\}_3]$ (**1**) and $PPh_2Me + N_2$ again in almost quantitative yield. Thus, as expected, the fragile $NNPPh_2Me$ ligand in $[\mathbf{1}\text{-}NNPPh_2Me]$ [OTf] is subject to facile fragmentation to its PPh_2Me and N_2 components under exposure to some chemical or physical stimuli (Scheme 1).

To gain insight into the electronic structure of [1-NNPPh₂Me][OTf] we performed density functional calculations (ADF 2004.01, BP86/TZ2P) on the model compounds $[(H_2PNN)Mo(NH_2)_3]$ (1'-NNPH₂) and $[(H_3PNN)Mo(NH_2)_3]^+$ ([1'-NNPH₃]⁺).^[12] A topological charge density analysis^[13] was carried out with aid of the Xaim program, [14] based on the calculated charge density distributions. The electronic charge density value found at the (3,-1) critical point (ρ_b) of the N-N bond in [1'-NNPH₃]⁺ (0.4016 e a_0^{-3}) was lower than that in 1'-NNPH₂ (0.4586 e a_0^{-3}). The calculated bond order (*n*) is 1.6 for [1'-NNPH₃]⁺ (cf. 1.9 for 1'-NNPH₂); this estimation is derived from Bader's linear correlation between ρ_b values and N-N bond order (n).[13] These data indicate that the N-N bond in the cationic [Mo](NNPR₃) complex is intermediate between a single and a double bond. [15] The information obtained from computational analysis, combined with the experimental structural data, reveal that the bonding in cation [1-NNPPh₂Me]⁺ is characterized by resonance between the hydrazido(2-) form **A** and the diazenido form **B** (Scheme 1). A similar pair of resonance structures was proposed in connection with the particular diazenylphosphonium salt [4-Et₂NC₆H₄NNPPh₃][BF₄] and its short P-N bond length (l.648 Å).^[16]

In summary, this work demonstrates that the remarkable ligand NNPR₃ composed of dinitrogen and methyldiphenylphosphane can be obtained and is understandable in the context of a cationic molybdenum system. Because one-electron reduction of cation [1-NNPPh₂Me]⁺ leads to fragmentation to the three known molecules PPh₂Me, N₂, and [Mo{N(tBu)Ar}₃] (1), it may be said that this remarkable three-component system is bound together entirely by the absence of a single electron.

Experimental Section

1-NNPPh₂: A solution of Na[1-N₂] (500 mg, 0.740 mmol) in THF (6 mL) was combined with a solution of Ph₂PCl (133 μL, 0.740 mmol) in THF (2 mL) at -35 °C. After the reaction mixture had been stirred for 5 min, THF solvent was removed in vacuo. Then pentane (10 mL) was added, the mixture was filtered through Celite, and pentane was removed in vacuo. Repeated recrystallization from pentane gave analytically pure 1-NNPPh₂ (62.8 mg, 10% yield). ¹H NMR (C₆D₆): δ = 8.01 (t, J = 7.2 Hz, 4H), 7.25 (t, J = 8.4 Hz, 4H), 7.10 (t, J = 7.2 Hz, 2H), 6.64 (s, 3H), 6.03 (s, 6H), 2.04 (s, 18H), 1.53 (s, 27H); ³¹P[¹H] NMR (C₆D₆): δ = 67.3 (s); Elemental analysis calcd C 68.80, H 7.70, N 8.36: found: C 69.03, H 8.19, N 7.96. Crystallographic data for 1-NNPPh₂: C₄₈H₆₄N₅PMo, M = 837.97, space group P2₁/c, a = 22.6095(19), b = 10.5661(9), c = 19.4732(16) Å; β = 94.183(2)°, V = 4639.6(7) Å³, Z = 4, F(000) = 1776, ρ _{calcd} = 1.20 g cm⁻³, 542 parameters refined with 7280 reflections with I > 2 σ (I) to R = 0.0516.

[1-NNPPh₂Me][OTf]: A solution of Na[1-N₂] (600 mg, 0.888 mmol) in THF (6 mL) was combined with a solution of Ph₂PCl (159 μ L, 0.888 mmol) in THF (2 mL) at -35 °C. After the reaction mixture was stirred for 5 min, THF solvent was removed in vacuo. Then pentane (10 mL) was added, the mixture was filtered through Celite, and pentane was removed in vacuo to give a crude material containing 1-NNPPh₂ (387 mg). To a pentane solution of the crude product, MeOTf (55 µL, 0.49 mmol) was added, and the mixture was stirred for 5 min. Yellow powder was immediately generated. The liquid was decanted off, and the yellow powder was washed with pentane twice, and dried in vacuo. Recrystallization from CH₂Cl₂/Et₂O/n-hexane gave yellow-orange microcrystals of [1-NNPPh₂Me][OTf] (363 mg, 41 % yield from Na[1-N₂]). ¹H NMR (C_6D_6) : $\delta = 8.19$ (dd, J = 13.1 Hz, J = 8.4 Hz, 4H), 7.32 (m, 4H), 7.15 (overlap with solvent residuals, 2H), 6.62 (s, 3H), 5.77 (brs, 6H), 3.03 $(d, J = 13.2 \text{ Hz}, 3 \text{ H}), 1.97 \text{ (s, } 18 \text{ H}), 1.16 \text{ ppm (s, } 27 \text{ H}); }^{31}P\{^{1}\text{H}\} \text{ NMR}$ $(C_6D_6): \ \delta = 20.0 \ ppm \ (s); \ FTIR \ (C_6D_6, \ KBr): \ \tilde{\nu}_{NN} = 1586 \ cm^{-1}.$ Elemental analysis calcd C 59.93, H 6.74, N 6.99; found: C 59.96, H 6.78, N 6.92. Crystallographic data for [1-NNPPh₂Me][OTf]: $C_{50}H_{67}N_5PSO_3F_3Mo$, M = 1002.07, space group $P2_1/n$, a = 21.3981(17), b = 10.8084(8), c = 22.1557(17) Å; $\beta = 95.1550(10)^\circ$, V = 10.8084(8) $5103.4(7) \text{ Å}^3$, Z = 4, F(000) = 2104, $\rho_{\text{cald}} = 1.304 \text{ g cm}^{-3}$, 577 parameters refined with 11891 reflections with $I > 2\sigma(I)$ to R = 0.0505.

CCDC-258978 (1-NNPPh₂), CCDC-258979 ([1-NNPPh₂Me]-[OTf]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

1-OTf: Mo(N[tBu]Ar)₃ (1, 273 mg, 0.437 mmol) was dissolved in pentane (10 mL), and AgOTf (112 mg, 0.437 mmol) was added at room temperature. The mixture was stirred vigorously for 4 h. The color of the mixture changed to deep purple. Then the mixture was filtered through Celite, and the filtrate was concentrated. Crystallization from pentane at -35 °C gave deep purple microcrystals of 1-OTf (43.8 mg, 13 % yield). 1 H NMR (6 D₆): δ = 6.06 (s, 3H), 5.94 (br s, 6H), 2.11 (s, 27H), 1.86 ppm (s, 18H); Elemental analysis calcd C 57.43, H 7.03, N 5.43; found: C 57.59, H 7.12, N 5.38. An NMR monitoring experiment of the reaction of [Mo{N(tBu)Ar}₃] with [Cp₂Fe][OTf] (1 equiv) in C₆D₆/[D₈]THF (v/v = 9/1) showed quantitative formation of 1-OTf.

Received: December 24, 2004 Published online: March 22, 2005

Keywords: diazenido ligands · dinitrogen ligands · molybdenum · N,P ligands · phosphine ligands

- [2] Selected examples; a) H₂C=N-N=PPh₃: G. Wittig, W. Haag, *Chem. Ber.* **1955**, *88*, 1654; b) [Ph-N=N-PPh₃][BF₄]: R. Yamashita, K. Kikukawa, F. Wada, T. Matsuda, *J. Organomet. Chem.* **1980**, *201*, 463; c) CN-N=PPh₃: B. Weinberger, W. P. Fehlhammer, *Chem. Ber.* **1985**, *118*, 42; d) [NNNPPh₃][SbCl₆]: W. Buder, A. Schmidt, *Chem. Ber.* **1973**, *106*, 3812.
- [3] It is known that some diazo compounds are stabilized by coordination to a d² metal center. For stabilization of terminal organoazido (NNNR) ligands; a) G. Proulx, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 6382; b) M. G. Fickes, W. M. Davis, C. C. Cummins, J. Am. Chem. Soc. 1995, 117, 6384; c) G. Proulx, R. G. Bergman, Organometallics 1996, 15, 684; d) G. Guillemot, E. Solari, C. Floriani, C. Rizzoli, Organometallics 2001, 20, 607. For stabilization of diazoalkane (NNCR2) ligands; e) M. Dartiguenave, M. J. Menu, E. Deydier, Y. Dartiguenave, H. Siebald, Coord. Chem. Rev. 1998, 178–180, 623, and references therein.

^[1] The abbreviation R which appears in some general formulas in this paper is not necessarily identical to the R = tBu as in 1 and complexes derived therefrom.

- [4] J. C. Peters, J.-P. F. Cherry, C. Thomas, L. M. Baraldo, D. J. Mindiola, W. M. Davis, C. C. Cummins, J. Am. Chem. Soc. 1999, 121, 10053.
- [5] A. Fürstner, C. Mathes, C. W. Lehmann, J. Am. Chem. Soc. 1999, 121, 9453.
- [6] C. E. Laplaza, M. J. A. Johnson, J. C. Peters, A. L. Odom, E. Kim, C. C. Cummins, G. N. George, I. J. Pickering, J. Am. Chem. Soc. 1996, 118, 8623.
- [7] A number of diazenido transition metal complexes are known; a) J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Book, New York, 1987; b) D. Sutton, Chem. Soc. Rev. 1975, 3, 443, and references therein. For synthesis from dinitrogen complex see c) J. Chatt, A. A. Diamantis, G. A. Heath, N. E. Hooper, G. J. Leigh, J. Chem. Soc. Dalton Trans. 1977, 688; d) M. Hidai, Y. Mizobe, Chem. Rev. 1995, 95, 1115, and references therein.
- [8] C. E. Laplaza, A. L. Odom, W. M. Davis, C. C. Cummins, J. Am. Chem. Soc. 1995, 117, 4999.
- [9] E. Böhm, K. Dehnicke, J. Beck, W. Hiller, J. Strähle, A. Maurer, D. Fenske, Z. Naturforsch. B 1988, 43, 138.
- [10] D. Bethell, M. P. Brown, M. M. Harding, C. A. Herbert, M. M. Khodaei, M. I. Rios, K. Woolstencroft, *Acta Crystallogr. Sect. B* 1992, 48, 683.
- [11] J. C. Peters, L. M. Baraldo, T. A. Baker, A. R. Johnson, C. C. Cummins, J. Organomet. Chem. 1999, 591, 24.
- [12] ADF Program Package (release 2004.1) was used. The optimized structures showed good agreement with the metrical parameters found in the crystal structure studies of 1-NNPPh₂ and [1-NNPPh₂Me][OTf], except for the N-N-P angle in [1'-NNPH₃]⁺ which appears marginally smaller compared to that found experimentally for [1-NNPPh₂Me][OTf]. Selected structural parameters of optimized 1'-NNPPH₂ and [1'-NNPH₃]⁺: for 1'-NNPH₂: Mo-N 1.757, N-N 1.243, N-P 1.770 Å; Mo-N-N 174.6, N-N-P 120.94°; for [1'-NNPH₃]⁺: Mo-N 1.735, N-N 1.295, N-P 1.627 Å; Mo-N-N 172.8, N-N-P 121.6°.
- [13] R. F. W. Bader, *Atoms in Molecules, a Quantum Theory*, Oxford University Press, New York, **1990**. For calibration of linear ρ_b versus n relationship, we performed similar calculations on hydrazine, *trans*-diazene, and dinitrogen, the values of $\rho_b(NN)$ for which are taken to represent n=1, 2, and 3, respectively.
- [14] J. C. Ortiz Alba, C. Bo Jane, Xaim, Universitat Rovira I Virgili, Tarragona, Spain.
- [15] Analysis of the P–N bond revealed a substantially higher ρ_b value (0.1984 e a_0^{-3}) in [1'-NNPH₃]⁺ than that in 1'-NNPH₂ (0.1506 e a_0^{-3}). This is consistent with considerable iminophosphorane character in [1'-NNPH₃]⁺. For the bonding on the iminophosphorane N=P bond see J. Koketsu, Y. Ninomiya, Y. Suzuki, N. Koga, *Inorg. Chem.* 1997, 36, 694, and references therein
- [16] F. W. B. Einstein, D. Sutton, P. L. Vogel, Can. J. Chem. 1978, 56, 891